Ensemble Universum SVM Learning for Multimodal Classification of Alzheimer's Disease
نویسندگان
چکیده
Recently, machine learning methods (e.g., support vector machine (SVM)) have received increasing attentions in neuroimaging-based Alzheimer’s disease (AD) classification studies. For classifying AD patients from normal controls (NC), standard SVM trains a classification model from only AD and NC subjects. However, in practice besides AD and NC subjects, there may also exist other subjects such as those with mild cognitive impairment (MCI). In this paper, we investigate the potential of using MCI subjects to aid the identification of AD from NC subjects. Specifically, we propose to use the universum support vector machine (U-SVM) learning by treating MCI subjects as the universum examples that do not belong to either of the classes (i.e., AD and NC) of interest. The idea of U-SVM learning is to separate AD from NC subjects through large margin hyperplane with the universum MCI subjects laying inside the margin borders, which is in accordance with our domain knowledge that MCI is a prodromal stage of AD with cognitive status between NC and AD. Furthermore, we propose ensemble universum SVM learning for multimodal classification by training an individual U-SVM classifier for each modality. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database demonstrate the efficacy of our proposed method.
منابع مشابه
Universum Learning for Multiclass SVM
We introduce Universum learning [1], [2] for multiclass problems and propose a novel formulation for multiclass universum SVM (MU-SVM). We also propose a span bound for MU-SVM that can be used for model selection thereby avoiding resampling. Empirical results demonstrate the effectiveness of MU-SVM and the proposed bound.
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملTwin support vector machine with Universum data
The Universum, which is defined as the sample not belonging to either class of the classification problem of interest, has been proved to be helpful in supervised learning. In this work, we designed a new Twin Support Vector Machine with Universum (called U-TSVM), which can utilize Universum data to improve the classification performance of TSVM. Unlike U-SVM, in U-TSVM, Universum data are loca...
متن کاملEnsemble support vector machine classification of dementia using structural MRI and mini-mental state examination.
BACKGROUND The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. NEW METHOD We proposed to use an ensemble of suppor...
متن کاملPractical Analysis of the Universum SVM Learning
The idea of ‘inference through contradictions’ was introduced by Vapnik[1] in order to incorporate a priori knowledge into the learning process. This knowledge is introduced via additional unlabeled data samples (called virtual examples or the Universum) that are used along with labeled training samples, to perform an inductive inference. For example, if the goal of learning is to discriminate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013